New approaches to quantifying aerosol influence on the cloud radiative effect.
نویسندگان
چکیده
The topic of cloud radiative forcing associated with the atmospheric aerosol has been the focus of intense scrutiny for decades. The enormity of the problem is reflected in the need to understand aspects such as aerosol composition, optical properties, cloud condensation, and ice nucleation potential, along with the global distribution of these properties, controlled by emissions, transport, transformation, and sinks. Equally daunting is that clouds themselves are complex, turbulent, microphysical entities and, by their very nature, ephemeral and hard to predict. Atmospheric general circulation models represent aerosol-cloud interactions at ever-increasing levels of detail, but these models lack the resolution to represent clouds and aerosol-cloud interactions adequately. There is a dearth of observational constraints on aerosol-cloud interactions. We develop a conceptual approach to systematically constrain the aerosol-cloud radiative effect in shallow clouds through a combination of routine process modeling and satellite and surface-based shortwave radiation measurements. We heed the call to merge Darwinian and Newtonian strategies by balancing microphysical detail with scaling and emergent properties of the aerosol-cloud radiation system.
منابع مشابه
Cloud-free shortwave aerosol radiative effect over oceans: Strategies for identifying anthropogenic forcing from Terra satellite measurements
[1] Using the Single Scanner Footprint (SSF) data that combines the multi-spectral Moderate Resolution Imaging Spectroradiometer (MODIS) cloud and aerosol products with the Clouds and the Earth’s Radiant Energy System (CERES) top of atmosphere broadband radiative fluxes, we first provide observational estimates of the instantaneous cloud-free shortwave aerosol radiative forcing (SWARF) over the...
متن کاملShortwave Radiative Impacts from Aerosol Effects on Marine Shallow Cumuli
The net shortwave radiative impact of aerosol on simulations of two shallow marine cloud cases is investigated using a Monte Carlo radiative transfer model. For a shallow cumulus case, increased aerosol concentrations are associated not only with smaller droplet sizes but also reduced cloud fractions and cloud dimensions, a result of evaporation-induced mixing and a lack of precipitation. Three...
متن کاملQuantifying aerosol direct radiative effect with Multiangle Imaging Spectroradiometer observations: Top-of-atmosphere albedo change by aerosols based on land surface types
[1] Using internally consistent albedo, aerosol, cloud, and surface data from the Multiangle Imaging Spectroradiometer (MISR) instrument onboard the Terra satellite, top-of-atmosphere (TOA) spectral albedo change (da) in the presence of aerosols over land is estimated and its dependence on aerosol and surface properties is analyzed. Linear regressions between spectral TOA albedo and aerosol opt...
متن کاملImproving our fundamental understanding of the role of aerosol-cloud interactions in the climate system.
The effect of an increase in atmospheric aerosol concentrations on the distribution and radiative properties of Earth's clouds is the most uncertain component of the overall global radiative forcing from preindustrial time. General circulation models (GCMs) are the tool for predicting future climate, but the treatment of aerosols, clouds, and aerosol-cloud radiative effects carries large uncert...
متن کاملEstimation of Asian dust aerosol effect on cloud radiation forcing using Fu-Liou radiative model and CERES measurements
The impact of Asian dust on cloud radiative forcing during 2003–2006 is studied by using the Clouds and Earth’s Radiant Energy Budget Scanner (CERES) data and the Fu-Liou radiative transfer model. Analysis of satellite data shows that the dust aerosol significantly reduced the cloud cooling effect at TOA. In dust contaminated cloudy regions, the 4-year mean values of the instantaneous shortwave...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 113 21 شماره
صفحات -
تاریخ انتشار 2016